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Statistical properties of random scattering matrices
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We discuss the statistical properties of eigenphases mfatrices in random models simulating quantum
systems that exhibit chaotic scattering classically. The energy dependence of the eigenphases is investigated
and the corresponding velocity and curvature distributions are obtained both theoretically and numerically. A
simple formula describing the velocity distributidgand hence the distribution of the Wigner time delay
derived that is capable of explaining the algebraic tail of the time delay distribution observed recently in
microwave experiments. A dependence of the eigenphases on other external parameters is also discussed. We
show that in the semiclassical limitarge number of channeglshe curvature distribution of-matrix eigen-
phases is the same as that corresponding to the curvature distribution of the underlying Hamiltonian and is
given by the generalized Cauchy distributi¢81063-651X%96)03209-6

PACS numbe(s): 05.45:+b, 72.20.Dp, 72.10.Bg

I. INTRODUCTION Note that no continuum-continuum coupling is permitted in
the model. The bound-continuum coupling is characterized
Quantum chaotic scattering has been discussed for a nurby coupling constangg and the energy dependent matrix
ber of years[1,2]. It may occur in a variety of different W,(E), where it is assumed that the columns/éfare nor-
physical situations from atoms and nuclei to disordered memalized to unity. IfW depends only weakly on the energy,
soscopic devices or microwave cavities. The schematithe corresponding unitatyl X M matrix S may be expressed
model of the system is presented in Fig. 1. The cafiitter-  as[3,4]
nal region is coupled to the outside world by leads. The

characterictics of the internal motion manifest themselves . 1

obviously in the properties of th& matrix. This is seen SCC’(E):5CC’_292'% ch(E)(E_H> Wicr(E),

directly using the Hamiltonian approach to the scattefBig k' (1.2
Consider a simple Hamiltonian with the Hilbert space '

spanned byN discrete statefk) andM continualc,E): where is the effective Hamiltonian describing the motion

within the bound subspace after eliminating the continua in a
Markov approximation. In an arbitrary basis spanning the

N M
H=> EK)(K| + S f dEE c,E)(c,E] bound subspace it takes the form
k=1 c=1
M

v Hg=H—ig2> WiW, . 1.3
+gczlkgl dE[Wi(E)[K)(C,E|+H.c.]. (1.1 K=K cgl ketiel (3

The question may be posed whether, for generic systems,
there is a unique relation betwe&matrix properties and
the type of motion inside the cavity. One way to address this
issue is via the semiclassical theddy, which seems, how-

M, ever, to be limited to a large number of channéls,On the
other hand, in recent experiments on scattering in micro-
structured5,6] M can be of the order of unity.

A second possible way is a stochastic approach in which
the HamiltonianH and the coupling matrixV [2] are mod-
eled by random matrices. A subsequent averaging over dif-
ferent realizations oH (typically for fixed W) yields statis-
tical predictions concerning fluctuations of physical
quantities of interest. One hopes, extending the conjecture

FIG. 1. Scheme of the scattering system. A system containin hich has been_ quite useful for boundec_j chaotic sysfeths
N bounded states and described by a Hamiltomais coupled via ~ that the properties of fluctuations are universal. For bounded,
matricesW and W' to two waveguides withM, and M, open  @utonomous, classically chaotic systems, depending on their
channels. The scattering in the system is thus characterized by &ymmetries, the statistical spectral fluctuations are, generi-
M XM matrix S, whereM =M+ M,,. cally, well represented by the corresponding quantities ob-

out ——
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54 STATISTICAL PROPERTIES OF RANDOM SCATTERING ... 2439
tained from Gaussian orthogon@OE), unitary (GUE), or  instance the time delay inside the interaction repicem be
symplectic(GSE ensembles of random matricgg. easily expressed using the derivatives ®Mmatrix eigen-
Assuming thatH matrices are drawn from one of these phases. Being directly accessible in experiments, statistical
ensembles and making similar assumptions on the couplingroperties of phase shifts deserve a detailed study. The
matrix W, one is forced to ask what are the properties of thenearest-neighbor spacing distribution has been discussed in
ensemble ofs matrices. A partial answer has been obtainedRefs.[22,23. As mentioned above, we consider here para-
by Lewenkopf and Weidenftier [2]: if H belongs to GOE Metric dependence of phase shifts.
and the channels are equivalgisee below the S matrix The paper is _organi_zed as follqus_. Th_e analytic_results
belongs to COE provided the coupling constgris equal to ~ €onceming the dls_trlbutlon of velocitiése., first derivatives
unity. This result has been recently generalized to all thre@f €i9€nphases with respect to energy or other external pa-
universality classes by Brouwg®] for arbitraryg. Brouwer ramete}, algo referred to as slopes,. are d|§cussed in Sec. Il.
found that theS matrices, Eq(1.2), conform with general- Here we discuss also briefly the distribution of the second

ized orthogonal(lGCOE) and unitary(GCUE) circular en- derl\{at!ves, le., the curvgtures of Fhe e|genphase_s. These
. ) predictions are tested against numerical results obtained from
sembleq10] which reduce to circular ensembles of Dyson

. ) simulations based on Eg4l..1) and(1.2) (and their generali-
(COE, %UBI [11], when the coupling to the continuum be- zation allowing for the presence of some external parameter
COmes | ea}. . . ) . in Sec. lll. For systems dependent on the external parameter
Brouwer’s result provides a direct link with another popu- gne may also construct directly circular ensembles of scat-

lar, random matrix theory based approach in which 0ngering matrices. The corresponding results are presented in
draws directlyS matrices, or transmission matrices, from anggc. |v.

appropriate random matrix ensembi€,12,13. The Hamil-

tonian appr.oach is, in a sense, more general since it allows Il PARAMETRIC HAMILTONIAN APPROACH

for calculation of time delays and energy-correlation aver- TO S MATRIX

ages, while the ensemble & matrices is energy indepen-

dent. On the other hand, one is frequently interested in Consider the unitary matri$ defined by Egs(1.2) and
single-point with respect to energy statistical measures(1.3). To discuss properties of the eigenphases ofSimea-
Those may be directly accessed from the ensembrof-  trix it is convenient to rewrite Ec(1.2) as

trices. In such a way one may obtain, e.g., the universal

conductance fluctuationg4] from the random matrix model _ 1+iA
S(E —, (2.7
[12]. 1—-iA
The study of mesoscopic devices points out that the ran- .
dom matrix approach has its limitations, e.g., the fluctuation&vith A given by
may become dependent on the length of the depé&s. It
@s still an open question Wh_at the limits are of the universal- A=g2wW' W. 2.2
ity. We do not address this problem here, rather we want E-H

to study, within the random model, the generic properties of ) ) )
S matrices dependent on some parameter. In this way El9€nphases, of the unitary matrixS are related to ei-
we extend recent intensive studies of the statistical proped€nvaluesn, of the M XM Hermitian matrixA by [9]

ties of bound systems dependent on the external parameters
[16-19.

For parameter independent Hamiltonians statistical ProPgince s is a function ofa... the statistical properties of
erties are generically universal once the mean level spacing o042 “are identical after unfolding. In the semiclassical
A is known. Parametric measures reveal a similar universalﬁ%it (IargeM) it has been showfg] that A belongs to the
ity; in addition to unfolding the energy levels one has 10game ensemble as. This implies that the statistical proper-
unfold the parameter dependerjd6,17. On the other hand,  jes (level spacing, number variance, gtof s,, are identical
much less is known about the parametric behavior of scatteigjty those of the eigenvalues &f. Moreover, the relation

ing systems. The two-point correlation function for t8e (2 3) is useful when discussing the parametric dependence of
matrix with respect to an external parameter was derlve@m_

recently by Macdo[20]. The conductance fluctuations inthe  To see how it works consider the slopes of the eigen-
presence of the magnetic field induced time-reversal symmeyhases with respect to the ener§y They have a direct
try breaking have been studied by Plutetral. [21]. The  physical significance as time delays associated with the cor-
semiclassical properties of the so-called Wigner time delayesponding phase shifisee, e.g.[15]) while the average
have been discussed by Jalabert and PichesH Obviously,  slope is just the celebrated Wigner time delay.
even in the absence of the external paramete6thmtrix is The eigenequation foa,,,
energy dependent — the corresponding correlation function
was obtained in2].

Instead of investigating th& matrix elements we focus
on the properties of the corresponding eigenphdpbase
shifts). Some important dynamical features of the systean  is equivalent to

s,=2 arctata,,), m=1,... M. (2.3

Alfmg?W'

E_HW|fm>:am|fm>! (24)
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H+ (2.5

g2

_WWT) |hm>: Elhm>
am

with |f,,) and|h,,) related by/h,,)=(1/E—H)W|f ). Note
that theNX N eigenvalue problem Eq2.5 has, for fixed
E, only M nontrivial solutionsa,, and corresponding eigen-
vectors|h,,). This is related to the fact th& —N eigenval-
ues of WW' vanish. Differentiating Eq(2.5) with respect to
E for nontrivial a,,, one gets

2 da, R
d_E<hm|WW |hm>:<hm|hm>

«Q

(2.6

™

m

We shall assume from now on thit,,) are normalized to
unity.

Using the relation(2.3) betweens,, anda,,, we express
the inverse time delay as

1 1+a?
“ds,/dE  da,/dE’

(2.7

Un="7n

Thus eliminating the derivative via E¢R.6) we obtain

h, |WWflh
um=gz<hmlww*|hm>+gzw. (2.9

m

But it follows from Eqg.(2.4) and the relation betweel ,,)

and|h,,,) that the second term on the right-hand side above i

proportional to the norngf ;| f,.). Thus finally we get

Um:92<hm|WWT|hm>+<fm|fm>/gz- (2.9

Equation(2.9) indicates that the distribution of inverse time
delays is related to the norms appearing on its right-hand

side (rhs). Having in mind thath,,|WW'|h,) is a sum of
M terms,

<hm|WWT|hm>: |<hm|W1>|2+ et |<hm|WM>|2’ (2-1®

wherew,, k=1,... M, are vectors describing the coupling
to the channek, we can estimate the distribution of the

matrix element h,|WW|h,,) by a x? distribution with M
degrees of freedom in the GOE case arnd 2legrees of

freedom in the GUE case, respectively. On the other han

(fmlfmy has ay? distribution with 1(GOE casgor 2 (GUE)

degrees of freedom. Assuming the two terms on the rhs of
Eqg. (2.9 to be independent, we obtain the distribution

P(u) by convolution of twoxf distributions with a different
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FIG. 2. Dependence of the mean time de{ay on the coupling
constantg for 8=2. Number of channel® labels each curve.

where 8= 1,2 for orthogonal and unitary ensembles, respec-
tively.

Figure 2 shows the mean time del@y) as a function of
g obtained by integration of the above distribution for
B=2 andM=2,4,6, and 16. In general, mean time delay
decreases witlM . Moreover, the value of the coupling con-
stantg,,, for which the mean delay time is maximal, de-
creases with the number of channels. In both limiting cases
g—0 andg— the mean time delay tends to zero, but the
physical meaning of this fact is different. In the former case
the coupling is so weak that the scattered wave is not af-
fected by the bound systehh. In the latter case very strong
coupling causes the scattering to occur almost instanta-
neously.
S Formula(2.11) simplifies in the special casg=1. Then
the inverse time delays are distributed accordingtadis-
tribution with 8(M +1) degrees of freedom and the mean
(u)y=pB(M+1)/2. The time delay distributioR() is then

P _ 1 —BM+1—1 -1/ 21
(T)—WT 2 e , ( . 2)
r—-
2
with the mean time delay
(T)=2/[B(M+1)—2]. (2.13

For a large number of channé the x? distribution can
be approximated by a Gaussian with the variance equal to

C}he mean(u). Thus forM large

_2a

e

P(7) exp{ — a?(2/7—2174)?}, (2.14

number of degrees of freedom and different means. The revherea®=1[48(M +1)] and 7o=2/8(M +1).
sult can be expressed in terms of the confluent hypergeomet- The algebraic tailfor 7 large) obtained for the time delay

ric function Fq(a;c;x), sometimes called the Kummer
function[24]. Changing the variable te= 1/u we obtain the
distribution of time delays,

2 MB (M+1) 1
EXF{_% A T'B;TB;(QZ_QZ);)
P(r)= :
gB(M—l)[‘(w Tﬁ@ﬂ
(2.1

distribution [Egs. (2.11)—(2.12)] is characterized solely by
the number of open channelsl, and the universality class
(orthogonal or unitaryof a system studied. Thus its origin is
purely quantum, since the algebraic tail disappears in the
semiclassical limitM — . Looking back at the derivation of
the time-delay distribution it becomes apparent that the alge-
braic tail originates from the properties of the eigenvectors,
|hmy, of the Hamiltonian problem, Eq2.5), or rather their
products with vectors describing the coupling to the con-
tinuum. The statistical properties of the latter are known
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from the random matrix theorj27]. Clearly the result ob-  P(r)
tained is valid only for chaotic systems whose statistical
properties are well approximated by the random approach. In 1.5 ¢ M=2 M=4
particular, since eigenvector properties change for integrable L
or mixed systems, a similar change, violating E2117), is 1.0
expected for time delay distribution if the internal dynamics
becomes classically not fully chaotic. Discussion of such a 05| T
situation is beyond the scope of the present study. mmmmm
Consider now the case when the Hamiltonlds H(x) 0.0 '
depends on some external parametesind investigate the 15 | M=6
properties ofs,,(x) keeping the energ fixed.
Equation(2.5), putting explicitly thex dependence, takes 1.0t
the following form:
) 0.5t 1
HO)+ —— WW | [y () =Elhy(x)),  (2.19 M
am(X) 00, 1 2 0

<>

and may be viewed as an eigenvalue equation for eigenval-

ues Ey(a,x) of the matrix H(x)+ g%/a WW!, defined for
any real parametex. Then Eq.(2.15 is equivalent to a set of
implicit equations

E,(a,x)=E; n=12,... N (2.19

for an unknowna(x). Again due to the positivity otV W',
Eqg.(2.16 has at most one solutiax,(x) for eachn with the
total number of all possible solutions being equal Nb
Moreover, from Eq(2.16 follows

an

da,(x) B JEm(a,Xx)
- g% WW [hy)*

dx X

(2.17

whereE,, denotes those eigenvalues for which Ej16 has
a nontrivial solution. Combining Eq€2.17 and (2.3 to-
gether with Eq.(2.6) yields simply

d JE,
U= xS T g

(2.18

FIG. 3. Time delay distribution®(7) for GUE internal dynam-
ics,g=1, and for a different number of open channdlks, as indi-
cated in the figure. The numerical dgtastogramg and the theo-
retical distributiongsolid lineg, P,(7), Eq.(2.12 are presented as
a function of7/(7) to facilitate comparison of distribution shape for
different M. According to Eq.(2.13, (7) is inversely proportional
to M.

Using the series representation Df,(z) for small z one
easily verifies that the large | tail of P(v) decays algebra-
ically as P(v)<1/|p|AM*+D/2*1  The asymptotic form of
Dp(z)=zp[1+0(z*2)] [25] valid for largez yields regular
behavior ofP(v) for |v| small.

Let us recall that the distribution of level slopes with re-
spect to an external parametgy.for a bounded generic sys-
tem is Gaussiafil7,1§. It is remarkable that the correspond-
ing slope distibution for the eigenphases of tBematrix
reveals the algebraic tails. As we shall demonstrate in the
numerical example below, for largd the algebraic tail as-
ymptotic form appears for very large| only, while the

providing the connection between the slope of the eigeneenter of the distribution resembles a Gaussian. One may
phase with respect to external parametehe corresponding verify, using the asymptotic form oP(7) given by Eq.
time delay, and the slope of thi¢ermitian eigenvalue prob- (2.14), that the Gaussian distribution f&(v) is recovered in

lem Eg.(2.15. The generic distribution of slopes for Her- the M — limit.

mitian random matrices is Gaussian-like7,1§. Thus the A similar analysis can be carried out also for curvature
eigenphases slope distributid®(v) may be obtained as a distribution. In the limit of largeM it can be shown in such

simple integral of the Gaussian aRd7) given by Eq.(2.12
(we consider the critical coupling=1 case only.
2
2

Pw)=— [ P )exp(—”—)ﬁ (2.19
v _\/ﬂ o 277 7’ '

a way that the curvature distribution tends to the generalized
Cauchy one, as for the bounded systdif3.

IIl. NUMERICAL RESULTS—HAMILTONIAN APPROACH

The numerical results have been obtained by a direct di-

under the assumption that appropriate unfolding of the paagonalization of thés matrices generated following random

rameter,x, has been madgl7,18. The integral in(2.19
yields[25]

B(M+1)
P(v)= WD_B(M+1)/2_1(1/U), (2.20

whereD,(2) is a shorthand notation for the product of the
parabolic cylinder functionD ,(z) [25], with the exponential

Dy(2) =exp(z2/4)Dy(2). (2.22)

matrix theory. A givenS matrix is defined by providing the
internal dynamics Hamiltoniam], and the matri3tV describ-

ing the coupling to the continuum. Consider the time-
reversal invariant casg&OE) for simplicity. A givenH ma-

trix is constructed7] by filling the Hamiltonian matrix with
Gaussian distributed random numbers of zero mean and a
given variance, the diagonal elements having twice the vari-
ance of the nondiagonal elements. TR M matrix W is

built from arbitrarily choserM eigenvectors oN X N auxil-

iary matrix H' (H' is independent oH but belongs to the
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4 P(t)
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1 15 1 M=6
0 . 1.0 4
00 02 04 06 08 10 1.2 /
05 |
P(7) . 00, 2
25 7*\_ b) T/<T>
20 / \ FIG. 5. Time delay distributiof®(7) for time reversal invariant
\ (GOEP) internal dynamicsg=1, and for a different number of open
15 N channelsM, as indicated in the figure. The numerical déiasto-
gramg are compared with both the analytical prediction, Eqyl12
10 (dashed lines and the corrected prediction, E@.1) (represented
by a solid ling.
5 (2.12 is not so nice as in the GUE case. Especially for small
0 M a discrepancy is significant. Importantly, it may be re-
0.0 0.05 0.1 0.15 moved when we use the formu(2.12) with one additional
T degree of freedomi.e.,
. . . . . _ —_ 1 M 1
_ FIG. 4. Tl.me delay dIStI’IbutIO.n§(7') for GUE internal Qyngm P(r)= 7 2% 7 3.1)
ics andg#1: (a) g=0.5, M=4; (b) g=2.0, M=6. Solid line M+2
represents the theoretical prediction as given by (Bd.1). r T

same ensemble, e.g., GDHhe vectors are normalized, so The corresponding average time delay is given by(Bd.3
the strength of the coupling is determined by the parametewith 8=1 andM — M + 1 substitutions. We are not able to
g. A diagonalization ofS(E) yields then the set dfl eigen-  give a plausible explanation for this additive degree of free-
phases. dom. The numerical results demonstrate clearly, however,

The derivatives with respect to enerfyare then obtained that it is superior to Eq(2.12 and leads to an excellent
by a finite difference method, from two sets of eigenphaseagreement with the numerical data — see Fig. 5.
obtained aE andE+ SE. The procedure is repeated by tak- Formula(3.1) implies that the tail of the distribution for
ing different, independent realizations of the internal Hamil-GOE behaves as™ ™72, In particular, forM =3 we obtain
tonian,H, and keeping the coupling matri?/ fixed [2]. for the time delay distributio®(7)~ 7~ "2, in full agreement

We discuss the numerical results obtained for the slopewith the experimental finding if26].
with respect to the energ¥, first. As discussed above, they  Similar numerical tests may also be performed for the
are directly related to possible time delays in the scatteringelocity distribution in the case of a parametric dependence
process and are, therefore, of particular interest. The tima order to test the formula®.19 and(2.20. To this end we
delay distributiond?(7) obtained numerically by diagonaliz- have to introduce a parametric dependence into the basic
ing the S (1.2) for various numbers of channelgl and model of Eqs(1.2—(1.3). One can, in principle, discuss sev-
g=1 in the GUE case are presented in Fig. 3 and compareeral possible cases, the parametemay affect either the
with the formula (2.12. The dimension of the internal bound system onlydescribed byH,, in Eq. (1.3)] or the
Hamiltonian was taketN=100, energyE was set to zero, decay part, i.e., the bound-continuum couphfigor both. In
and the data were obtained from 15 000 gener&ewatri-  a generic case, arguably, both parts of the effective Hamil-
ces. Fine agreement of the numerical results with the formuléonian will be affected. We consider the case when the inter-
(2.12 does not depend on the energy and the number afial dynamics only isx dependent, i.eH=H(x). This situ-
eigenstates, providdd>M andE is not too large. Figure 4 ation corresponds directly to predictions obtained in the
shows a comparison of the distributi®{7) obtained forg preceding section. A similar approach has been adopted in
#1 and the formula2.11). Again the agreement is quite the treatment of time reversal symmetry-breaking influence
satisfactory. on the conductance fluctuatiof1].

Analogous results for the GOE case and 1 are plotted The parametrix dependence is taken in a generic form:
in Fig. 5 (dashed ling The agreement with the prediction H=H cos§)+H,sin(x) [18], whereH; are drawn indepen-
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FIG. 6. Numerical data for distribution of slop@slth respect to FIG. 7. Same as in the previous figure but for GOE internal

external parametgfor GUE internal dynamic and=1 plotted in  dynamic. The theoretical prediction is obtained by the modification
the semilogarithmic scale. The theoretical prediction 10 is of Eqg. (2.20 discussed in the text.
shown as a full line and the number of channels is indicated in each

graph. Note the strongly non-Gaussian shape of the distribution. To complete the discussion of the parametric dependence

in the Hamiltonian based approach let us pass now to the
dently from thesameensemble of random matrices. The curvature distributions. Numerical tests performed for the
trigonometric form assures that the mean density of statesurvaturesk =d?s/dE? are presented in Fig. 8. Note the
remains the same for atl and the motion of bound levels as quite good agreement of the numerical data with the gener-
a function ofx is stationany{18]. The slopes have been cal- alized Cauchy distribution(18]. The double-logarithmic
culated by a finite difference in from eigenphases @. As ~ scale used enhances the small and Idigebehavior. For
before, more than 15 00B matrices were used for the aver- large |[K| the agreement is excellent, confirming the uni-
aging. versality of the large curvature tail behavior also for the

In the GUE case the agreement between the numericRr€Sent scattering system. On the other hand, one observes a

data and the analytic prediction for the slope distribution, EqS!ight excess of small curvaturesnd the corresponding lack

(2.20, is again remarkable—see Fig. 6. Note strongly non-Of “medium” curvatures. It is a clear indication that

Gaussian character of the obtained distribution. In the sem"yl:16 is not sufficient to realize fully the semiclassical

logarithmic scale used in Figh a Gaussian would take an _imit. Using the analogy with the bound system level dynam-

inverted parabola shape. The distributions show an algebrafgs [18] one may conclude that avoided crossings between

. eigenphase&s a function of the ener are still partiall
tail P(v)v~M*2) for smallM. ForM large a center of the genp & 9fz) P y

distributi bl bl an distrib isolated.
listribution resembles a parabdiee., a Gaussian distribu- e cyryvature distribution with respect to the external pa-
tion in the linear scalefollowed by a straight line in the

) = SAthding ’ ) rameter is plotted in Fig. 9. Comparing to the previous case,
semilogarithmic plot indicating a regime of exponential be-5 petter agreement with the generalized Cauchy distribution
havior, P(v)=exp(-v|). The numerical data are insuffi- js observed, indicating that the semiclassical regime is
cient to detect a transition to a possible algebraic tail forreached faster when the motion of eigenphases as a function
lv| large. ForM even larger(not shown the regime of of x is considered. A similar qualitative conclusion may be
Gaussian behavior broadens and the exponential behaviegached considering the distribution of time delays and of the
moves to the tails indicating the transition to the semiclassislopes with respect to the parameter
cal limit. For M smaller one observes stronger deviations from the
Consider now GOE internal dynamics. Similarly as for universal Cauchy distributiotnot shown. The explicit de-
the time delays, the agreement with the numerical data ipendence on the number of open channels in that case has
admirable if the distributiori2.19) is evaluated with the “ad-  obviously the same origin as the corresponding dependence
hoc” improved P(7) given by Eq.(3.1))—compare Fig. 7. in the case of slopéor time delay distributions.
As before, the “proper’P(7) [Eqg. (2.12] with =1 used
in arriving at Eq.(2.20 leads to a theoretical prediction
with clear disagreement with the numerical data for small
M (not shown. The corrected expression is obtained from As mentioned in the Introduction one often employs ran-
Eqg. (2.20 by =1 andM—M+1 substitutions. The dis- dom ensembles to directly model propertiesSmatrices
tributions obtained are similar in shape to those correspond410,12,13. One may envision a similar approach for the
ing to the GUE case, with the algebraic tail of the form study of the parametric statistics. To this end one has to
P(v)xv M?272 seen clearly forM small. For the largest define the parametric dependence ®fmatrices directly,
number of channels plotted/ =16, we again observe the without reference to the underlying bounded dynamics. Ob-
Gaussian center with exponential tails in similarity with theviously, there is some ambiguity here, there are several pos-
GUE distribution. sible choices. The ideal approach should be conceptually

IV. RANDOM PARAMETRIC S MATRIX
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FIG. 8. Distribution of second derivatives of eigenphases of FIG. 9. As in the previous figure for the curvature with respect
matrix with respect to energy =d2s/dE2 obtained numerically to an external parametef,= ds/dx?.
for the case oM =16 open channelga) for GUE internal dynam-

ics, (b) for GOE dynamics. The solittlashedl lines in both panels Such a form of a parametric dependence is “borrowed”
represent the generalized Cauchy distributions corresponding to tfeom the typical form of a Floquet operator corresponding to
GOE (GUE) case, respectively. quantum mapsge.g., for a famous kicked rotator or for the

kicked top—for a detailed introduction to such problems see

simple and, at the same time, lead to the same distributiorl&27]). While in [28] the form of the Floquet operator was
as those obtained for the Hamiltonian based approach. Aftefetermined by the dynamics of the system, here we assume a
all, in both cases the parameter independent matrices beloigndomS,, as discussed above.
to generalized circular ensemblg8]. We shall see below Equation(4.1) implies a Gaussian distribution of slopes,
that the simplest possibilities agree with the Hamiltonian apsince the slopes of eigenphasesSt x=0 are given by
proach in the limit of a large number of chann&emiclas- diagonal elements of matriX represented in the eigenbasis
sical limit) only. of Sy. The latter are Gaussian distributed as we have taken

The first approach proposed tak®snatrices in the form Sp andV independently. The Gaussian character of the ve-
locity distribution for the mode(4.1) is independent on the
matrix sizeM and holds for both COE and CUE. Recalling
the results obtained in the Hamiltonian model we see that the
statistical predictions for eigenphase slope distribution coin-
where Sy is drawn from the appropriate circular ensemblecide only in theM —c limit.
(COE or CUH of a given rankM while V is a Hermitian The randomS matrices belonging to a given ensemble of
matrix (rank M), independent 08, and drawn from GOE or random unitary matrice€COE, CUB may be generatedor
GUE, respectively. Then the eigenphasesxatO are the arbitraryM) by drawing the generalized Euler angles from
phase shifts 06;. The slopes and curvatures $fare easily the appropriate probability distributiof29]. Similarly one
defined as the corresponding derivativesat0. may construct the way to introduce the parametric depen-

S(x) = Spexp(ixV), (4.1



54 STATISTICAL PROPERTIES OF RANDOM SCATTERING ... 2445

it seems at first. While thig posteriori procedure may be

hardly described as an elegant one, it gives an indication

of the properties of the required ensemble\bfmatrices.

In particular, following the discussion presented in Sec. I, it

is clear that the construction of such an ensemble may in-

volve scalar products of unnormalized vectors in

M-dimensional spacécompare Eq(2.10]. Hopefully one

may define the random ensemble ®matrices of the form

. (4.1 which is universal, i.e., reproduces not only the distri-

-4 2 0 2 4 bution of slopes but also of all other statistical measures

involving the parametek. This would allow us to use the

FIG. 10. Distribution of slopes of eigenphases with respect to‘direct” S matrix approach instead of the Hamiltonian one,

the perturbation parameter of random unitary matrices of size also for the problems involving the external parametric de-

M =40 typical of COE;(a) parameterx controls variations of all pendence.

M?—1 Euler angles 4); (b) only M diagonal angles are varied

(¢©). Solid and dotted lines represent Gaussian distributipas

rabolas in the semilogarithmic plowith the variance fitted to the V. CONCLUDING REMARKS

center of the slope distributions.

0
In(P(v))

-2

-6

In this work we have considered the statistical properties

IQf derivatives of thes matrix eigenphases with respect to the
alized Euler angle§30]. Our numerical results indicate that energyI_E as well as W't.h respect to some external param.eter
X. Within the Hamiltonian approach we were able to derive,

if one assumes thadll M2—1 angles are affected by the ” . . L S
perturbation in a same way, the distribution of slopes iusing swpple heuristic .arguments, the analytic distributions
Gaussiarfor arbitraryM ' for the time delay valid for an arbitrary number of open

Results received of forandom unitary COE matrices channelsM and an arbitrary value of the coupling constant

Wi M =40 are presente n Fig 10. Gaussian character - A AE dsbuton of dopoe wit respect 0 a0 ex.
the “velocity” distribution, obtained in this case, is not at all the nupmerical simulations has shown goéd agreepment of the
typical of any parametric dynamics defined for random uni- heory with the numerical data in the CUE case. The discrep-

tary matrices. On the contrary, one may construct many .
kinds of parametric dynamics in the space of unitary matri-2nc'es observed for the COE case may be removed by an

ces leading tomon-GaussiardistributionsP(v). Exemplary ad—\;\%zr:(?[ﬂglcrﬁg?nn O;tthgfF;L?Eovigrdke\zg;eﬁﬁ:gﬂ'e d we were
data, represented in the figure by triangles, were obtained for P

a model in which onlyM diagonal Euler angles have been informed that in the CUE case the same formulas for the
: diagon ang time delay distribution were obtained by Fyodorov and Som-
varied. For smalM the distributions obtained are closer to

o mers using supersymmetry calcu[@4]. We hope that in the

the results of the Hamiltonian model.9 than the pure future the supersymmetric approach will be able to verify the

Gaussian distribution. Similar results hold also for the CUE o . . .
proposed distributions also for the time-reversal invariant

Ca?_%t us consider now the second derivatives of eigen hase(gOE) model.
genp We have verified numerically that the curvature dis-

agﬂggigecgg(deﬁoihiFlgfgsqte?ﬁgr?:ﬁ\r/;& rrrees dF;(s)trr]ideS'gotr? tr?aetribution (i.e., the distribution of second derivatives of eigen-
been stué)ied alre;adﬂ8]pand showr{18] to obey the gener- hases with respect to enejgbeys the generalized Cauchy
alized Cauchy distribution with quite a good a)(/:cura% for a"distribution[18] in the semiclassical limit¥! large.
auchy @ q Y . ol Construction of the parametric dependence directly for
three universality classes. The numerical simulations per; . . )
i . : . the randomS matrices belonging to a given random en-
formed by us indicate that favl large (semiclassical limit .
semble has been shown to be ambiguous. The natural

the same property holds for ti&matrix models described choices for the dynamics lead to Gaussian velocity distribu-

abO\;]e. imol . di d ab failed tion for an arbitrary number of open channels. Then the

The simple propositions discussed above failed to reprof;\greement with the Hamiltonian based approach is obtained
duce the distribution of slopes with respect to the externa o

. - S in the M —co limit only.

parameterx, obtained for smalM within the Hamiltonian
S-matrix model. However, this goal may be simply obtained
by a slight modification of the assumption concerning the
matrix V in Eq. (4.1). As discussed above, the distribution of
slopes ofS-matrix eigenphases is equivalent to the distribu- J.Z. thanks D. Delande for discussions. We acknowledge
tion of diagonal elements df in the eigenbasis 08,. In- interesting exchanges with Y. Fyodorov and are grateful
stead of choosiny to belong to the appropriate Gaussianto him for informing us of his results prior to the publica-
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dence by considering the infinitesimal changes of the gene
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