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We discuss the statistical properties of eigenphases ofS matrices in random models simulating quantum
systems that exhibit chaotic scattering classically. The energy dependence of the eigenphases is investigated
and the corresponding velocity and curvature distributions are obtained both theoretically and numerically. A
simple formula describing the velocity distribution~and hence the distribution of the Wigner time delay! is
derived that is capable of explaining the algebraic tail of the time delay distribution observed recently in
microwave experiments. A dependence of the eigenphases on other external parameters is also discussed. We
show that in the semiclassical limit~large number of channels! the curvature distribution ofS-matrix eigen-
phases is the same as that corresponding to the curvature distribution of the underlying Hamiltonian and is
given by the generalized Cauchy distribution.@S1063-651X~96!03209-6#

PACS number~s!: 05.45.1b, 72.20.Dp, 72.10.Bg

I. INTRODUCTION

Quantum chaotic scattering has been discussed for a num-
ber of years@1,2#. It may occur in a variety of different
physical situations from atoms and nuclei to disordered me-
soscopic devices or microwave cavities. The schematic
model of the system is presented in Fig. 1. The cavity~inter-
nal region! is coupled to the outside world by leads. The
characterictics of the internal motion manifest themselves
obviously in the properties of theS matrix. This is seen
directly using the Hamiltonian approach to the scattering@3#.

Consider a simple Hamiltonian with the Hilbert space
spanned byN discrete statesuk& andM continuauc,E&:
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Note that no continuum-continuum coupling is permitted in
the model. The bound-continuum coupling is characterized
by coupling constantg and the energy dependent matrix
Wkc(E), where it is assumed that the columns ofW are nor-
malized to unity. IfW depends only weakly on the energy,
the corresponding unitaryM3M matrixSmay be expressed
as @3,4#
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~1.2!

whereH is the effective Hamiltonian describing the motion
within the bound subspace after eliminating the continua in a
Markov approximation. In an arbitrary basis spanning the
bound subspace it takes the form

Hkl5Hkl2 ig2(
c51

M

WkcWcl . ~1.3!

The question may be posed whether, for generic systems,
there is a unique relation betweenS-matrix properties and
the type of motion inside the cavity. One way to address this
issue is via the semiclassical theory@1#, which seems, how-
ever, to be limited to a large number of channels,M . On the
other hand, in recent experiments on scattering in micro-
structures@5,6# M can be of the order of unity.

A second possible way is a stochastic approach in which
the HamiltonianH and the coupling matrixW @2# are mod-
eled by random matrices. A subsequent averaging over dif-
ferent realizations ofH ~typically for fixedW) yields statis-
tical predictions concerning fluctuations of physical
quantities of interest. One hopes, extending the conjecture
which has been quite useful for bounded chaotic systems@7#,
that the properties of fluctuations are universal. For bounded,
autonomous, classically chaotic systems, depending on their
symmetries, the statistical spectral fluctuations are, generi-
cally, well represented by the corresponding quantities ob-

FIG. 1. Scheme of the scattering system. A system containing
N bounded states and described by a HamiltonianH is coupled via
matricesW andW† to two waveguides withM1 and M2 open
channels. The scattering in the system is thus characterized by an
M3M matrix S, whereM5M11M2.
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tained from Gaussian orthogonal~GOE!, unitary ~GUE!, or
symplectic~GSE! ensembles of random matrices@8#.

Assuming thatH matrices are drawn from one of these
ensembles and making similar assumptions on the coupling
matrixW, one is forced to ask what are the properties of the
ensemble ofSmatrices. A partial answer has been obtained
by Lewenkopf and Weidenmu¨ller @2#: if H belongs to GOE
and the channels are equivalent~see below! the S matrix
belongs to COE provided the coupling constantg is equal to
unity. This result has been recently generalized to all three
universality classes by Brouwer@9# for arbitraryg. Brouwer
found that theS matrices, Eq.~1.2!, conform with general-
ized orthogonal~GCOE! and unitary~GCUE! circular en-
sembles@10# which reduce to circular ensembles of Dyson
~COE, CUE! @11#, when the coupling to the continuum be-
comes ideal.

Brouwer’s result provides a direct link with another popu-
lar, random matrix theory based approach in which one
draws directlySmatrices, or transmission matrices, from an
appropriate random matrix ensemble@10,12,13#. The Hamil-
tonian approach is, in a sense, more general since it allows
for calculation of time delays and energy-correlation aver-
ages, while the ensemble ofS matrices is energy indepen-
dent. On the other hand, one is frequently interested in
single-point with respect to energy statistical measures.
Those may be directly accessed from the ensemble ofSma-
trices. In such a way one may obtain, e.g., the universal
conductance fluctuations@14# from the random matrix model
@12#.

The study of mesoscopic devices points out that the ran-
dom matrix approach has its limitations, e.g., the fluctuations
may become dependent on the length of the device@15#. It
is still an open question what the limits are of the universal-
ity. We do not address this problem here, rather we want
to study, within the random model, the generic properties of
S matrices dependent on some parameter. In this way
we extend recent intensive studies of the statistical proper-
ties of bound systems dependent on the external parameters
@16–19#.

For parameter independent Hamiltonians statistical prop-
erties are generically universal once the mean level spacing
D is known. Parametric measures reveal a similar universal-
ity; in addition to unfolding the energy levels one has to
unfold the parameter dependence@16,17#. On the other hand,
much less is known about the parametric behavior of scatter-
ing systems. The two-point correlation function for theS
matrix with respect to an external parameter was derived
recently by Maceˆdo @20#. The conductance fluctuations in the
presence of the magnetic field induced time-reversal symme-
try breaking have been studied by Pluharˇ et al. @21#. The
semiclassical properties of the so-called Wigner time delay
have been discussed by Jalabert and Pichard@15#. Obviously,
even in the absence of the external parameter theSmatrix is
energy dependent — the corresponding correlation function
was obtained in@2#.

Instead of investigating theS matrix elements we focus
on the properties of the corresponding eigenphases~phase
shifts!. Some important dynamical features of the system~for

instance the time delay inside the interaction region! can be
easily expressed using the derivatives ofS-matrix eigen-
phases. Being directly accessible in experiments, statistical
properties of phase shifts deserve a detailed study. The
nearest-neighbor spacing distribution has been discussed in
Refs. @22,23#. As mentioned above, we consider here para-
metric dependence of phase shifts.

The paper is organized as follows. The analytic results
concerning the distribution of velocities~i.e., first derivatives
of eigenphases with respect to energy or other external pa-
rameter!, also referred to as slopes, are discussed in Sec. II.
Here we discuss also briefly the distribution of the second
derivatives, i.e., the curvatures of the eigenphases. These
predictions are tested against numerical results obtained from
simulations based on Eqs.~1.1! and~1.2! ~and their generali-
zation allowing for the presence of some external parameter!
in Sec. III. For systems dependent on the external parameter
one may also construct directly circular ensembles of scat-
tering matrices. The corresponding results are presented in
Sec. IV.

II. PARAMETRIC HAMILTONIAN APPROACH
TO S MATRIX

Consider the unitary matrixS defined by Eqs.~1.2! and
~1.3!. To discuss properties of the eigenphases of theSma-
trix it is convenient to rewrite Eq.~1.2! as

S~E!5
11 iA

12 iA
, ~2.1!

with A given by

A5g2W†
1

E2H
W. ~2.2!

Eigenphasessm of the unitary matrixS are related to ei-
genvaluesam of theM3M Hermitian matrixA by @9#

sm52 arctan~am!, m51, . . . ,M . ~2.3!

Since sm is a function ofam , the statistical properties of
sm andam are identical after unfolding. In the semiclassical
limit ~largeM ) it has been shown@9# thatA belongs to the
same ensemble asH. This implies that the statistical proper-
ties ~level spacing, number variance, etc.! of sm are identical
with those of the eigenvalues ofH. Moreover, the relation
~2.3! is useful when discussing the parametric dependence of
sm .

To see how it works consider the slopes of the eigen-
phases with respect to the energyE. They have a direct
physical significance as time delays associated with the cor-
responding phase shifts~see, e.g.,@15#! while the average
slope is just the celebrated Wigner time delay.

The eigenequation foram ,

Au f m&g2W†
1

E2H
Wu f m&5amu f m&, ~2.4!

is equivalent to
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SH1
g2

am
WW†D uhm&5Euhm& ~2.5!

with u f m& and uhm& related byuhm&5(1/E2H)Wu f m&. Note
that theN3N eigenvalue problem Eq.~2.5! has, for fixed
E, only M nontrivial solutionsam and corresponding eigen-
vectorsuhm&. This is related to the fact thatM2N eigenval-
ues ofWW† vanish. Differentiating Eq.~2.5! with respect to
E for nontrivial am one gets

g2

am
2

dam
dE

^hmuWW†uhm&5^hmuhm& ~2.6!

We shall assume from now on thatuhm& are normalized to
unity.

Using the relation~2.3! betweensm andam , we express
the inverse time delay as

um5tm
215

1

dsm /dE
5

11am
2

dam /dE
. ~2.7!

Thus eliminating the derivative via Eq.~2.6! we obtain

um5g2^hmuWW†uhm&1g2
^hmuWW†uhm&

am
2 . ~2.8!

But it follows from Eq. ~2.4! and the relation betweenu f m&
anduhm& that the second term on the right-hand side above is
proportional to the norm̂f mu f m&. Thus finally we get

um5g2^hmuWW†uhm&1^ f mu f m&/g2. ~2.9!

Equation~2.9! indicates that the distribution of inverse time
delays is related to the norms appearing on its right-hand
side ~rhs!. Having in mind that̂ hmuWW†uhm& is a sum of
M terms,

^hmuWW†uhm&5u^hmuw1&u21•••1u^hmuwM&u2, ~2.10!

wherewk , k51, . . . ,M , are vectors describing the coupling
to the channelk, we can estimate the distribution of the
matrix element̂ hmuWW†uhm& by a x2 distribution withM
degrees of freedom in the GOE case and 2M degrees of
freedom in the GUE case, respectively. On the other hand,
^ f mu f m& has ax2 distribution with 1~GOE case! or 2 ~GUE!
degrees of freedom. Assuming the two terms on the rhs of
Eq. ~2.9! to be independent, we obtain the distribution
P(u) by convolution of twoxn

2 distributions with a different
number of degrees of freedom and different means. The re-
sult can be expressed in terms of the confluent hypergeomet-
ric function 1F1(a;c;x), sometimes called the Kummer
function @24#. Changing the variable tot51/u we obtain the
distribution of time delays,

P~t!5

expF2
g2

t G
1

F1SMb

2
;
~M11!b

2
;~g22g22!

1

t D
gb~M21!GS b~M11!

2 D tb
M11
2 11

,

~2.11!

whereb51,2 for orthogonal and unitary ensembles, respec-
tively.

Figure 2 shows the mean time delay^t& as a function of
g obtained by integration of the above distribution for
b52 andM52,4,6, and 16. In general, mean time delay
decreases withM . Moreover, the value of the coupling con-
stantgm , for which the mean delay time is maximal, de-
creases with the number of channels. In both limiting cases
g→0 andg→` the mean time delay tends to zero, but the
physical meaning of this fact is different. In the former case
the coupling is so weak that the scattered wave is not af-
fected by the bound systemH. In the latter case very strong
coupling causes the scattering to occur almost instanta-
neously.

Formula~2.11! simplifies in the special caseg51. Then
the inverse time delays are distributed according tox2 dis-
tribution with b(M11) degrees of freedom and the mean
^u&5b(M11)/2. The time delay distributionP(t) is then

P~t!5
1

GS b~M11!

2 D t2b
M11
2 21e2 1/t, ~2.12!

with the mean time delay

^t&52/@b~M11!22#. ~2.13!

For a large number of channelsM thex2 distribution can
be approximated by a Gaussian with the variance equal to
the mean̂ u&. Thus forM large

P~t!5
2a

Apt2
exp$2a2~2/t22/t0!

2%, ~2.14!

wherea251/@4b(M11)# andt052/b(M11).
The algebraic tail~for t large! obtained for the time delay

distribution @Eqs. ~2.11!–~2.12!# is characterized solely by
the number of open channels,M , and the universality class
~orthogonal or unitary! of a system studied. Thus its origin is
purely quantum, since the algebraic tail disappears in the
semiclassical limit,M→`. Looking back at the derivation of
the time-delay distribution it becomes apparent that the alge-
braic tail originates from the properties of the eigenvectors,
uhm&, of the Hamiltonian problem, Eq.~2.5!, or rather their
products with vectors describing the coupling to the con-
tinuum. The statistical properties of the latter are known

FIG. 2. Dependence of the mean time delay^t& on the coupling
constantg for b52. Number of channelsM labels each curve.
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from the random matrix theory@27#. Clearly the result ob-
tained is valid only for chaotic systems whose statistical
properties are well approximated by the random approach. In
particular, since eigenvector properties change for integrable
or mixed systems, a similar change, violating Eq.~2.11!, is
expected for time delay distribution if the internal dynamics
becomes classically not fully chaotic. Discussion of such a
situation is beyond the scope of the present study.

Consider now the case when the HamiltonianH5H(x)
depends on some external parameterx and investigate the
properties ofsm(x) keeping the energyE fixed.

Equation~2.5!, putting explicitly thex dependence, takes
the following form:

SH~x!1
g2

am~x!
WW†D uhm~x!&5Euhm~x!&, ~2.15!

and may be viewed as an eigenvalue equation for eigenval-
ues En(a,x) of the matrixH(x)1 g2/a WW†, defined for
any real parametera. Then Eq.~2.15! is equivalent to a set of
implicit equations

En~a,x!5E; n51,2, . . . ,N ~2.16!

for an unknowna(x). Again due to the positivity ofWW†,
Eq. ~2.16! has at most one solutionam(x) for eachn with the
total number of all possible solutions being equal toM .
Moreover, from Eq.~2.16! follows

dam~x!

dx
5

]Em~a,x!

]x

am
2

g2^hmuWW†uhm&
, ~2.17!

whereEm denotes those eigenvalues for which Eq.~2.16! has
a nontrivial solution. Combining Eqs.~2.17! and ~2.3! to-
gether with Eq.~2.6! yields simply

vm5
d

dx
sm5tm

]Em

]x
~2.18!

providing the connection between the slope of the eigen-
phase with respect to external parameterx, the corresponding
time delay, and the slope of theHermitianeigenvalue prob-
lem Eq. ~2.15!. The generic distribution of slopes for Her-
mitian random matrices is Gaussian-like@17,18#. Thus the
eigenphases slope distributionP(v) may be obtained as a
simple integral of the Gaussian andP(t) given by Eq.~2.12!
~we consider the critical couplingg51 case only!:

P~v !5
1

A2p
E
0

`

P~t!expS 2
v2

2t2Ddt

t
, ~2.19!

under the assumption that appropriate unfolding of the pa-
rameter,x, has been made@17,18#. The integral in~2.19!
yields @25#

P~v !5
b~M11!

A8pvb~M11!/211
D2b~M11!/221~1/v !, ~2.20!

whereDp(z) is a shorthand notation for the product of the
parabolic cylinder function,Dp(z) @25#, with the exponential

Dp~z!5exp~z2/4!Dp~z!. ~2.21!

Using the series representation ofDp(z) for small z one
easily verifies that the largeuvu tail of P(v) decays algebra-
ically as P(v)}1/uvub(M11)/211. The asymptotic form of
Dp(z)5zp@11O(z22)# @25# valid for largez yields regular
behavior ofP(v) for uvu small.

Let us recall that the distribution of level slopes with re-
spect to an external parameter,x, for a bounded generic sys-
tem is Gaussian@17,18#. It is remarkable that the correspond-
ing slope distibution for the eigenphases of theS matrix
reveals the algebraic tails. As we shall demonstrate in the
numerical example below, for largeM the algebraic tail as-
ymptotic form appears for very largeuvu only, while the
center of the distribution resembles a Gaussian. One may
verify, using the asymptotic form ofP(t) given by Eq.
~2.14!, that the Gaussian distribution forP(v) is recovered in
theM→` limit.

A similar analysis can be carried out also for curvature
distribution. In the limit of largeM it can be shown in such
a way that the curvature distribution tends to the generalized
Cauchy one, as for the bounded systems@18#.

III. NUMERICAL RESULTS—HAMILTONIAN APPROACH

The numerical results have been obtained by a direct di-
agonalization of theS matrices generated following random
matrix theory. A givenSmatrix is defined by providing the
internal dynamics Hamiltonian,H, and the matrixW describ-
ing the coupling to the continuum. Consider the time-
reversal invariant case~GOE! for simplicity. A givenH ma-
trix is constructed@7# by filling the Hamiltonian matrix with
Gaussian distributed random numbers of zero mean and a
given variance, the diagonal elements having twice the vari-
ance of the nondiagonal elements. TheN3M matrix W is
built from arbitrarily chosenM eigenvectors ofN3N auxil-
iary matrixH8 (H8 is independent ofH but belongs to the

FIG. 3. Time delay distributionsP(t) for GUE internal dynam-
ics,g51, and for a different number of open channels,M , as indi-
cated in the figure. The numerical data~histograms! and the theo-
retical distributions~solid lines!, P2(t), Eq. ~2.12! are presented as
a function oft/^t& to facilitate comparison of distribution shape for
differentM . According to Eq.~2.13!, ^t& is inversely proportional
to M .
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same ensemble, e.g., GOE!. The vectors are normalized, so
the strength of the coupling is determined by the parameter
g. A diagonalization ofS(E) yields then the set ofM eigen-
phases.

The derivatives with respect to energyE are then obtained
by a finite difference method, from two sets of eigenphases
obtained atE andE1dE. The procedure is repeated by tak-
ing different, independent realizations of the internal Hamil-
tonian,H, and keeping the coupling matrixW fixed @2#.

We discuss the numerical results obtained for the slopes
with respect to the energy,E, first. As discussed above, they
are directly related to possible time delays in the scattering
process and are, therefore, of particular interest. The time
delay distributionsP(t) obtained numerically by diagonaliz-
ing the S ~1.2! for various numbers of channelsM and
g51 in the GUE case are presented in Fig. 3 and compared
with the formula ~2.12!. The dimension of the internal
Hamiltonian was takenN5100, energyE was set to zero,
and the data were obtained from 15 000 generatedS matri-
ces. Fine agreement of the numerical results with the formula
~2.12! does not depend on the energy and the number of
eigenstates, providedN@M andE is not too large. Figure 4
shows a comparison of the distributionP(t) obtained forg
Þ1 and the formula~2.11!. Again the agreement is quite
satisfactory.

Analogous results for the GOE case andg51 are plotted
in Fig. 5 ~dashed line!. The agreement with the prediction

~2.12! is not so nice as in the GUE case. Especially for small
M a discrepancy is significant. Importantly, it may be re-
moved when we use the formula~2.12! with one additional
degree of freedom, i.e.,

P̃~t!5
1

GSM12

2 D t2
M
2 22e2

1
t. ~3.1!

The corresponding average time delay is given by Eq.~2.13!
with b51 andM→M11 substitutions. We are not able to
give a plausible explanation for this additive degree of free-
dom. The numerical results demonstrate clearly, however,
that it is superior to Eq.~2.12! and leads to an excellent
agreement with the numerical data — see Fig. 5.

Formula~3.1! implies that the tail of the distribution for
GOE behaves ast2M /222. In particular, forM53 we obtain
for the time delay distributionP(t)'t27/2, in full agreement
with the experimental finding in@26#.

Similar numerical tests may also be performed for the
velocity distribution in the case of a parametric dependence
in order to test the formulas~2.19! and~2.20!. To this end we
have to introduce a parametric dependence into the basic
model of Eqs.~1.2!–~1.3!. One can, in principle, discuss sev-
eral possible cases, the parameterx may affect either the
bound system only@described byHkl in Eq. ~1.3!# or the
decay part, i.e., the bound-continuum couplingW, or both. In
a generic case, arguably, both parts of the effective Hamil-
tonian will be affected. We consider the case when the inter-
nal dynamics only isx dependent, i.e.,H5H(x). This situ-
ation corresponds directly to predictions obtained in the
preceding section. A similar approach has been adopted in
the treatment of time reversal symmetry-breaking influence
on the conductance fluctuations@21#.

The parametricx dependence is taken in a generic form:
H5H1cos(x)1H2sin(x) @18#, whereHi are drawn indepen-

FIG. 4. Time delay distributionsP(t) for GUE internal dynam-
ics andgÞ1: ~a! g50.5, M54; ~b! g52.0, M56. Solid line
represents the theoretical prediction as given by Eq.~2.11!.

FIG. 5. Time delay distributionP(t) for time reversal invariant
~GOE! internal dynamics,g51, and for a different number of open
channels,M , as indicated in the figure. The numerical data~histo-
grams! are compared with both the analytical prediction, Eq.~2.12!
~dashed lines!, and the corrected prediction, Eq.~3.1! ~represented
by a solid line!.
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dently from thesameensemble of random matrices. The
trigonometric form assures that the mean density of states
remains the same for allx and the motion of bound levels as
a function ofx is stationary@18#. The slopes have been cal-
culated by a finite difference inx from eigenphases ofS. As
before, more than 15 000Smatrices were used for the aver-
aging.

In the GUE case the agreement between the numerical
data and the analytic prediction for the slope distribution, Eq.
~2.20!, is again remarkable—see Fig. 6. Note strongly non-
Gaussian character of the obtained distribution. In the semi-
logarithmic scale used in Fig. 6 a Gaussian would take an
inverted parabola shape. The distributions show an algebraic
tail P(v)}v2(M12) for smallM . ForM large a center of the
distribution resembles a parabola~i.e., a Gaussian distribu-
tion in the linear scale! followed by a straight line in the
semilogarithmic plot indicating a regime of exponential be-
havior, P(v)}exp(2guvu). The numerical data are insuffi-
cient to detect a transition to a possible algebraic tail for
uvu large. ForM even larger~not shown! the regime of
Gaussian behavior broadens and the exponential behavior
moves to the tails indicating the transition to the semiclassi-
cal limit.

Consider now GOE internal dynamics. Similarly as for
the time delays, the agreement with the numerical data is
admirable if the distribution~2.19! is evaluated with the ‘‘ad-
hoc’’ improved P̃(t) given by Eq.~3.1!—compare Fig. 7.
As before, the ‘‘proper’’P(t) @Eq. ~2.12!# with b51 used
in arriving at Eq. ~2.20! leads to a theoretical prediction
with clear disagreement with the numerical data for small
M ~not shown!. The corrected expression is obtained from
Eq. ~2.20! by b51 andM→M11 substitutions. The dis-
tributions obtained are similar in shape to those correspond-
ing to the GUE case, with the algebraic tail of the form
P(v)}v2M /222 seen clearly forM small. For the largest
number of channels plotted,M516, we again observe the
Gaussian center with exponential tails in similarity with the
GUE distribution.

To complete the discussion of the parametric dependence
in the Hamiltonian based approach let us pass now to the
curvature distributions. Numerical tests performed for the
curvaturesK5d2s/dE2 are presented in Fig. 8. Note the
quite good agreement of the numerical data with the gener-
alized Cauchy distribution@18#. The double-logarithmic
scale used enhances the small and largeuKu behavior. For
large uKu the agreement is excellent, confirming the uni-
versality of the large curvature tail behavior also for the
present scattering system. On the other hand, one observes a
slight excess of small curvatures~and the corresponding lack
of ‘‘medium’’ curvatures!. It is a clear indication that
M516 is not sufficient to realize fully the semiclassical
limit. Using the analogy with the bound system level dynam-
ics @18# one may conclude that avoided crossings between
eigenphases~as a function of the energy,E) are still partially
isolated.

The curvature distribution with respect to the external pa-
rameter is plotted in Fig. 9. Comparing to the previous case,
a better agreement with the generalized Cauchy distribution
is observed, indicating that the semiclassical regime is
reached faster when the motion of eigenphases as a function
of x is considered. A similar qualitative conclusion may be
reached considering the distribution of time delays and of the
slopes with respect to the parameterx.

ForM smaller one observes stronger deviations from the
universal Cauchy distribution~not shown!. The explicit de-
pendence on the number of open channels in that case has
obviously the same origin as the corresponding dependence
in the case of slope~or time delay! distributions.

IV. RANDOM PARAMETRIC S MATRIX

As mentioned in the Introduction one often employs ran-
dom ensembles to directly model properties ofS matrices
@10,12,13#. One may envision a similar approach for the
study of the parametric statistics. To this end one has to
define the parametric dependence ofS matrices directly,
without reference to the underlying bounded dynamics. Ob-
viously, there is some ambiguity here, there are several pos-
sible choices. The ideal approach should be conceptually

FIG. 6. Numerical data for distribution of slopes~with respect to
external parameter! for GUE internal dynamic andg51 plotted in
the semilogarithmic scale. The theoretical prediction Eq.~2.20! is
shown as a full line and the number of channels is indicated in each
graph. Note the strongly non-Gaussian shape of the distribution.

FIG. 7. Same as in the previous figure but for GOE internal
dynamic. The theoretical prediction is obtained by the modification
of Eq. ~2.20! discussed in the text.
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simple and, at the same time, lead to the same distributions
as those obtained for the Hamiltonian based approach. After
all, in both cases the parameter independent matrices belong
to generalized circular ensembles@9#. We shall see below
that the simplest possibilities agree with the Hamiltonian ap-
proach in the limit of a large number of channels~semiclas-
sical limit! only.

The first approach proposed takesSmatrices in the form

S~x!5S0exp~ ixV!, ~4.1!

whereS0 is drawn from the appropriate circular ensemble
~COE or CUE! of a given rankM while V is a Hermitian
matrix ~rankM ), independent ofS0 and drawn from GOE or
GUE, respectively. Then the eigenphases atx50 are the
phase shifts ofS0. The slopes and curvatures ofS are easily
defined as the corresponding derivatives atx50.

Such a form of a parametric dependence is ‘‘borrowed’’
from the typical form of a Floquet operator corresponding to
quantum maps~e.g., for a famous kicked rotator or for the
kicked top—for a detailed introduction to such problems see
@27#!. While in @28# the form of the Floquet operator was
determined by the dynamics of the system, here we assume a
randomS0, as discussed above.

Equation~4.1! implies a Gaussian distribution of slopes,
since the slopes of eigenphases ofS at x50 are given by
diagonal elements of matrixV represented in the eigenbasis
of S0. The latter are Gaussian distributed as we have taken
S0 andV independently. The Gaussian character of the ve-
locity distribution for the model~4.1! is independent on the
matrix sizeM and holds for both COE and CUE. Recalling
the results obtained in the Hamiltonian model we see that the
statistical predictions for eigenphase slope distribution coin-
cide only in theM→` limit.

The randomSmatrices belonging to a given ensemble of
random unitary matrices~COE, CUE! may be generated~for
arbitraryM ) by drawing the generalized Euler angles from
the appropriate probability distribution@29#. Similarly one
may construct the way to introduce the parametric depen-

FIG. 8. Distribution of second derivatives of eigenphases ofS
matrix with respect to energy,K5d2s/dE2 obtained numerically
for the case ofM516 open channels,~a! for GUE internal dynam-
ics, ~b! for GOE dynamics. The solid~dashed! lines in both panels
represent the generalized Cauchy distributions corresponding to the
GOE ~GUE! case, respectively.

FIG. 9. As in the previous figure for the curvature with respect
to an external parameter,K5d2s/dx2.
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dence by considering the infinitesimal changes of the gener-
alized Euler angles@30#. Our numerical results indicate that
if one assumes thatall M 221 angles are affected by the
perturbation in a same way, the distribution of slopes is
Gaussianfor arbitraryM .

Results received of 104 random unitary COE matrices
with M540 are presented in Fig. 10. Gaussian character of
the ‘‘velocity’’ distribution, obtained in this case, is not at all
typical of any parametric dynamics defined for random uni-
tary matrices. On the contrary, one may construct many
kinds of parametric dynamics in the space of unitary matri-
ces leading tonon-GaussiandistributionsP(v). Exemplary
data, represented in the figure by triangles, were obtained for
a model in which onlyM diagonal Euler angles have been
varied. For smallM the distributions obtained are closer to
the results of the Hamiltonian model~1.2! than the pure
Gaussian distribution. Similar results hold also for the CUE
case.

Let us consider now the second derivatives of eigenphases
with respect tox. For a Floquet operator corresponding to the
kicked top model, the parametric curvature distribution has
been studied already@28# and shown@18# to obey the gener-
alized Cauchy distribution with quite a good accuracy for all
three universality classes. The numerical simulations per-
formed by us indicate that forM large ~semiclassical limit!
the same property holds for theS matrix models described
above.

The simple propositions discussed above failed to repro-
duce the distribution of slopes with respect to the external
parameter,x, obtained for smallM within the Hamiltonian
S-matrix model. However, this goal may be simply obtained
by a slight modification of the assumption concerning the
matrixV in Eq. ~4.1!. As discussed above, the distribution of
slopes ofS-matrix eigenphases is equivalent to the distribu-
tion of diagonal elements ofV in the eigenbasis ofS0. In-
stead of choosingV to belong to the appropriate Gaussian
random ensemble for the given symmetry, one may choose
V from the ensemble defined by the desired distribution of
diagonal elements, Eq.~2.19!. This defines the distribution of
M elements ofV leaving the remainingM (M21)/2 ele-
ments undefined~in a chosen basis!. This additional freedom
may be utilized to make this ensemble less artificial than

it seems at first. While thisa posteriori procedure may be
hardly described as an elegant one, it gives an indication
of the properties of the required ensemble ofV matrices.
In particular, following the discussion presented in Sec. II, it
is clear that the construction of such an ensemble may in-
volve scalar products of unnormalized vectors in
M -dimensional space@compare Eq.~2.10!#. Hopefully one
may define the random ensemble forSmatrices of the form
~4.1! which is universal, i.e., reproduces not only the distri-
bution of slopes but also of all other statistical measures
involving the parameterx. This would allow us to use the
‘‘direct’’ Smatrix approach instead of the Hamiltonian one,
also for the problems involving the external parametric de-
pendence.

V. CONCLUDING REMARKS

In this work we have considered the statistical properties
of derivatives of theSmatrix eigenphases with respect to the
energyE as well as with respect to some external parameter
x. Within the Hamiltonian approach we were able to derive,
using simple heuristic arguments, the analytic distributions
for the time delay valid for an arbitrary number of open
channelsM and an arbitrary value of the coupling constant
g. An analytic distribution of slopes with respect to an ex-
ternal parameter has also been obtained. A comparison with
the numerical simulations has shown good agreement of the
theory with the numerical data in the CUE case. The discrep-
ancies observed for the COE case may be removed by an
ad-hocmodification of the proposed expression.

When the main part of this work was finished we were
informed that in the CUE case the same formulas for the
time delay distribution were obtained by Fyodorov and Som-
mers using supersymmetry calculus@31#. We hope that in the
future the supersymmetric approach will be able to verify the
proposed distributions also for the time-reversal invariant
~COE! model.

We have verified numerically that the curvature dis-
tribution ~i.e., the distribution of second derivatives of eigen-
phases with respect to energy! obeys the generalized Cauchy
distribution @18# in the semiclassical limit (M large!.

Construction of the parametric dependence directly for
the randomS matrices belonging to a given random en-
semble has been shown to be ambiguous. The natural
choices for the dynamics lead to Gaussian velocity distribu-
tion for an arbitrary number of open channels. Then the
agreement with the Hamiltonian based approach is obtained
in theM→` limit only.
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FIG. 10. Distribution of slopes of eigenphases with respect to
the perturbation parameterx of random unitary matrices of size
M540 typical of COE;~a! parameterx controls variations of all
M221 Euler angles (n); ~b! only M diagonal angles are varied
(L). Solid and dotted lines represent Gaussian distributions~pa-
rabolas in the semilogarithmic plot! with the variance fitted to the
center of the slope distributions.
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